Fuzzy Types Clustering for Microarray Data

نویسندگان

  • Seo Young Kim
  • Tai Myong Choi
چکیده

The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others. Keywords—Clustering, microarray data, Fuzzy-type clustering, Validation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Microarray Analysis Using Fuzzy C-means Clustering Algorithm

The technology of DNA microarrays has become the most sophisticated and the most widely used among other microarrays. This paper shows the feature of microarray analysis and the expanded information of DNA microarray analysis. The clustering technique is the process of finding a structured data from unlabeled data. It is a grouping process of dividing the data in groups of similar type and it c...

متن کامل

Gene Expression Analysis Using Fuzzy K-Means Clustering

The recent advances of array technologies have made it possible to monitor huge amount of genes expression data. Clustering, for example, hierarchical clustering, self-organizing maps (SOM), kmeans clustering, has become important analysis for such gene expression data. We have applied the Fuzzy adaptive resonance theory (Fuzzy ART) [5] to the gene clustering of DNA microarray data and the clus...

متن کامل

Hybrid Fuzzy C-Means Clustering Technique for Gene Expression Data

The challenging issue in microarray technique is to analyze and interpret the large volume of data. This can be achieved by clustering techniques in data mining. In hard clustering like hierarchical and k-means clustering techniques, data is divided into distinct clusters, where each data element belongs to exactly one cluster so that the out come of the clustering may not be correct in many ti...

متن کامل

Microarray Gene Expression Analysis Using Type 2 Fuzzy Logic (mga-fl)

Data mining is defined as the process of extracting or mining knowledge from vast and large database. Data mining is an interdisciplinary field that brings together techniques from machine learning, pattern recognition, statistics, databases, and visualization to address the issue of information extraction from large databases. Bioinformatics is defined as the science of organizing and analyzin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005